The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces

Takeshi Yoshimoto — 2000

Studia Mathematica

We study the convergence properties of Dirichlet series for a bounded linear operator T in a Banach space X. For an increasing sequence μ = μ n of positive numbers and a sequence f = f n of functions analytic in neighborhoods of the spectrum σ(T), the Dirichlet series for f n ( T ) is defined by D[f,μ;z](T) = ∑n=0∞ e-μnz fn(T), z∈ ℂ. Moreover, we introduce a family of summation methods called Dirichlet methods and study the ergodic properties of Dirichlet averages for T in the uniform operator topology.

Page 1

Download Results (CSV)