On the random ergodic theorem
We study the convergence properties of Dirichlet series for a bounded linear operator T in a Banach space X. For an increasing sequence of positive numbers and a sequence of functions analytic in neighborhoods of the spectrum σ(T), the Dirichlet series for is defined by D[f,μ;z](T) = ∑n=0∞ e-μnz fn(T), z∈ ℂ. Moreover, we introduce a family of summation methods called Dirichlet methods and study the ergodic properties of Dirichlet averages for T in the uniform operator topology.
Page 1