The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Some relations between Hodge numbers and invariant complex structures on compact nilmanifolds

Takumi Yamada — 2017

Complex Manifolds

Let N be a simply connected real nilpotent Lie group, n its Lie algebra, and € a lattice in N. If a left-invariant complex structure on N is Γ-rational, then HƏ̄s,t(Γ/N) ≃ HƏ̄s,t(nC) for each s; t. We can construct different left-invariant complex structures on one nilpotent Lie group by using the complexification and the scalar restriction. We investigate relationships to Hodge numbers of associated compact complex nilmanifolds.

Page 1

Download Results (CSV)