The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A compact K¨ahlerian manifoldM of dimension n satisfies hp,q(M) = hq,p(M) for each p, q.However, a compact complex manifold does not satisfy the equations in general. In this paper, we consider duality of Hodge numbers of compact complex nilmanifolds.
Let N be a simply connected real nilpotent Lie group, n its Lie algebra, and € a lattice in N. If a left-invariant complex structure on N is Γ-rational, then HƏ̄s,t(Γ/N) ≃ HƏ̄s,t(nC) for each s; t. We can construct different left-invariant complex structures on one nilpotent Lie group by using the complexification and the scalar restriction. We investigate relationships to Hodge numbers of associated compact complex nilmanifolds.
If N is a simply connected real nilpotent Lie group with a Γ-rational complex structure, where Γ is a lattice in N, then [...] for each s, t.We study relations between invariant complex structures and Hodge numbers of compact nilmanifolds from a viewpoint of Lie algberas.
In this paper, we consider several invariant complex structures on a compact real nilmanifold, and we study relations between invariant complex structures and Hodge numbers.
Download Results (CSV)