Orthogonality and the maximum of Littlewood cosine polynomials
Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ₙ (resp. ) the set of all polynomials of degree at most n with real (resp. complex) coefficients. We define the truncation operators Sₙ for polynomials of the form , , by , (here 0/0 is interpreted as 1). We define the norms of the truncation operators by , . Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant c₁ > 0 such...
Denote by spanf₁,f₂,... the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following. Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose is a sequence of distinct positive numbers. Then is dense in C[0,1] if and only if . Moreover, if , then every function from the C[0,1] closure of can be represented as an analytic function on z ∈ ℂ ∖ (-∞, 0]: |z| < 1 restricted to (0,1). This result improves an earlier result...
We prove that there are absolute constants and such that for every there are such that has at least distinct sign changes in . This improves and extends earlier results of Bloch and Pólya.
For n ∈ ℕ, L > 0, and p ≥ 1 let be the largest possible value of k for which there is a polynomial P ≠ 0 of the form , 1/paj ∈ ℂsuch that divides P(x). For n ∈ ℕ and L > 0 let be the largest possible value of k for which there is a polynomial P ≠ 0 of the form , , , such that divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈ (0,1]. Essentially...
Page 1