Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

On the closure of Baire classes under transfinite convergences

Tamás Mátrai — 2004

Fundamenta Mathematicae

Let X be a Polish space and Y be a separable metric space. For a fixed ξ < ω₁, consider a family f α : X Y ( α < ω ) of Baire-ξ functions. Answering a question of Tomasz Natkaniec, we show that if for a function f: X → Y, the set α < ω : f α ( x ) f ( x ) is finite for every x ∈ X, then f itself is necessarily Baire-ξ. The proof is based on a characterization of Σ η sets which can be interesting in its own right.

Weak difference property of functions with the Baire property

Tamás Mátrai — 2003

Fundamenta Mathematicae

We prove that the class of functions with the Baire property has the weak difference property in category sense. That is, every function for which f(x+h) - f(x) has the Baire property for every h ∈ ℝ can be written in the form f = g + H + ϕ where g has the Baire property, H is additive, and for every h ∈ ℝ we have ϕ(x+h) - ϕ (x) ≠ 0 only on a meager set. We also discuss the weak difference property of some subclasses of the class of functions with the Baire property, and the consistency of the difference...

Covering Σ ξ 0 -generated ideals by Π ξ 0 sets

Tamás Mátrai — 2007

Commentationes Mathematicae Universitatis Carolinae

We develop the theory of topological Hurewicz test pairs: a concept which allows us to distinguish the classes of the Borel hierarchy by Baire category in a suitable topology. As an application we show that for every Π ξ 0 and not Σ ξ 0 subset P of a Polish space X there is a σ -ideal 2 X such that P but for every Σ ξ 0 set B P there is a Π ξ 0 set B ' P satisfying B B ' . We also discuss several other results and problems related to ideal generation and Hurewicz test pairs.

On the difference property of Borel measurable functions

Hiroshi FujitaTamás Mátrai — 2010

Fundamenta Mathematicae

If an atomlessly measurable cardinal exists, then the class of Lebesgue measurable functions, the class of Borel functions, and the Baire classes of all orders have the difference property. This gives a consistent positive answer to Laczkovich's Problem 2 [Acta Math. Acad. Sci. Hungar. 35 (1980)]. We also give a complete positive answer to Laczkovich's Problem 3 concerning Borel functions with Baire-α differences.

On splitting infinite-fold covers

Márton ElekesTamás MátraiLajos Soukup — 2011

Fundamenta Mathematicae

Let X be a set, κ be a cardinal number and let ℋ be a family of subsets of X which covers each x ∈ X at least κ-fold. What assumptions can ensure that ℋ can be decomposed into κ many disjoint subcovers? We examine this problem under various assumptions on the set X and on the cover ℋ: among other situations, we consider covers of topological spaces by closed sets, interval covers of linearly ordered sets and covers of ℝⁿ by polyhedra and by arbitrary convex sets. We focus on...

Borel Tukey morphisms and combinatorial cardinal invariants of the continuum

Samuel CoskeyTamás MátraiJuris Steprāns — 2013

Fundamenta Mathematicae

We discuss the Borel Tukey ordering on cardinal invariants of the continuum. We observe that this ordering makes sense for a larger class of cardinals than has previously been considered. We then provide a Borel version of a large portion of van Douwen's diagram. For instance, although the usual proof of the inequality 𝔭 ≤ 𝔟 does not provide a Borel Tukey map, we show that in fact there is one. Afterwards, we revisit a result of Mildenberger concerning a generalization of the unsplitting and splitting...

Page 1

Download Results (CSV)