The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Greedy Approximation with Regard to Bases and General Minimal Systems

Konyagin, S.Temlyakov, V. — 2002

Serdica Mathematical Journal

*This research was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant N00014-96-1-1003 This paper is a survey which also contains some new results on the nonlinear approximation with regard to a basis or, more generally, with regard to a minimal system. Approximation takes place in a Banach or in a quasi-Banach space. The last decade was very successful in studying nonlinear approximation. This was motivated by numerous applications. Nonlinear approximation...

Optimal estimators in learning theory

V. N. Temlyakov — 2006

Banach Center Publications

This paper is a survey of recent results on some problems of supervised learning in the setting formulated by Cucker and Smale. Supervised learning, or learning-from-examples, refers to a process that builds on the base of available data of inputs x i and outputs y i , i = 1,...,m, a function that best represents the relation between the inputs x ∈ X and the corresponding outputs y ∈ Y. The goal is to find an estimator f z on the base of given data z : = ( ( x , y ) , . . . , ( x m , y m ) ) that approximates well the regression function f ρ of...

Greedy approximation and the multivariate Haar system

A. KamontV. N. Temlyakov — 2004

Studia Mathematica

We study nonlinear m-term approximation in a Banach space with regard to a basis. It is known that in the case of a greedy basis (like the Haar basis in L p ( [ 0 , 1 ] ) , 1 < p < ∞) a greedy type algorithm realizes nearly best m-term approximation for any individual function. In this paper we generalize this result in two directions. First, instead of a greedy algorithm we consider a weak greedy algorithm. Second, we study in detail unconditional nongreedy bases (like the multivariate Haar basis d = × . . . × in L p ( [ 0 , 1 ] d ) ,...

Convergence of greedy approximation II. The trigonometric system

S. V. KonyaginV. N. Temlyakov — 2003

Studia Mathematica

We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form G ( f ) : = k Λ f ̂ ( k ) e i ( k , x ) , where Λ d is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in the case of...

Convergence of greedy approximation I. General systems

S. V. KonyaginV. N. Temlyakov — 2003

Studia Mathematica

We consider convergence of thresholding type approximations with regard to general complete minimal systems eₙ in a quasi-Banach space X. Thresholding approximations are defined as follows. Let eₙ* ⊂ X* be the conjugate (dual) system to eₙ; then define for ε > 0 and x ∈ X the thresholding approximations as T ε ( x ) : = j D ε ( x ) e * j ( x ) e j , where D ε ( x ) : = j : | e * j ( x ) | ε . We study a generalized version of T ε that we call the weak thresholding approximation. We modify the T ε ( x ) in the following way. For ε > 0, t ∈ (0,1) we set D t , ε ( x ) : = j : t ε | e * j ( x ) | < ε and consider the weak...

Quasi-greedy bases and Lebesgue-type inequalities

S. J. DilworthM. Soto-BajoV. N. Temlyakov — 2012

Studia Mathematica

We study Lebesgue-type inequalities for greedy approximation with respect to quasi-greedy bases. We mostly concentrate on the L p spaces. The novelty of the paper is in obtaining better Lebesgue-type inequalities under extra assumptions on a quasi-greedy basis than known Lebesgue-type inequalities for quasi-greedy bases. We consider uniformly bounded quasi-greedy bases of L p , 1 < p < ∞, and prove that for such bases an extra multiplier in the Lebesgue-type inequality can be taken as C(p)ln(m+1)....

Page 1

Download Results (CSV)