We show that under ZFC, for every indecomposable ordinal α < ω₁, there exists a poset which is β-proper for every β < α but not α-proper. It is also shown that a poset is forcing equivalent to a poset satisfying Axiom A if and only if it is α-proper for every α < ω₁.
We will characterize-under appropriate axiomatic assumptions-when a linear order is minimal with respect to not being a countable union of scattered suborders. We show that, assuming PFA⁺, the only linear orders which are minimal with respect to not being σ-scattered are either Countryman types or real types. We also outline a plausible approach to demonstrating the relative consistency of: There are no minimal non-σ-scattered linear orders. In the process of establishing these results, we will...
Download Results (CSV)