The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let R be a complete discrete valuation ring with quotient field K, L/K be a Galois extension with Galois group G and S be the integral closure of R in L. If a is a factor set of G with values in the group of units of S, then (L/K,a) (resp. Λ =(S/R,a)) denotes the crossed product K-algebra (resp. crossed product R -order in A). In this paper hermitian and quadratic forms on Λ -lattices are studied and the existence of at most two irreducible non-singular quadratic Λ -lattices is proved (Theorem 3.5)....
Various results on the induced representations of group rings are extended to modules over strongly group-graded rings. In particular, a proof of the graded version of Mackey's theorem is given.
Let Λ = (S/R,α) be a local weak crossed product order in the crossed product algebra A = (L/K,α) with integral cocycle, and the inertial group of α, for S* the group of units of S. We give a condition for the first ramification group of L/K to be a subgroup of H. Moreover we describe the Jacobson radical of Λ without restriction on the ramification of L/K.
Download Results (CSV)