The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let (X,A) be a pair of topological spaces, T : X → X a free involution and A a T-invariant subset of X. In this context, a question that naturally arises is whether or not all continuous maps have a T-coincidence point, that is, a point x ∈ X with f(x) = f(T(x)). In this paper, we obtain results of this nature under cohomological conditions on the spaces A and X.
Download Results (CSV)