Weak-star continuous homomorphisms and a decomposition of orthogonal measures
We consider the set of complex-valued homomorphisms of a uniform algebra which are weak-star continuous with respect to a fixed measure . The -parts of are defined, and a decomposition theorem for measures in is obtained, in which constituent summands are mutually absolutely continuous with respect to representing measures. The set is studied for -invariant algebras on compact subsets of the complex plane and also for the infinite polydisc algebra.