The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a geometric construction of the phase space of the elliptic Calogero-Moser system
for arbitrary root systems, as a space of Weyl invariant pairs (bundles, Higgs fields) on
the -th power of the elliptic curve, where is the rank of the root system. The
Poisson structure and the Hamiltonians of the integrable system are given natural
constructions. We also exhibit a curious duality between the spectral varieties for the
system associated to a root system, and the Lagrangian varieties for...
We study the geometry of -bundles—locally projective -modules—on algebraic curves, and apply them to the study of integrable hierarchies, specifically the multicomponent
Kadomtsev–Petviashvili (KP) and spin Calogero–Moser (CM) hierarchies. We show that KP hierarchies have a geometric description as flows on moduli spaces of -bundles; in particular, we
prove that the local structure of -bundles is captured by the full Sato Grassmannian. The rational, trigonometric, and elliptic solutions of KP...
Download Results (CSV)