The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that, if a a finite-dimensional operator space E is such that X contains E C-completely isomorphically whenever X** contains E completely isometrically, then E is -completely isomorphic to Rₘ ⊕ Cₙ for some n, m ∈ ℕ ∪ 0. The converse is also true: if X** contains Rₘ ⊕ Cₙ λ-completely isomorphically, then X contains Rₘ ⊕ Cₙ (2λ + ε)-completely isomorphically for any ε > 0.
We consider majorization problems in the non-commutative setting. More specifically, suppose E and F are ordered normed spaces (not necessarily lattices), and 0 ≤ T ≤ S in B(E,F). If S belongs to a certain ideal (for instance, the ideal of compact or Dunford-Pettis operators), does it follow that T belongs to that ideal as well? We concentrate on the case when E and F are C*-algebras, preduals of von Neumann algebras, or non-commutative function spaces. In particular, we show that, for C*-algebras...
Using isometric embedding of metric trees into Banach spaces, this paper will investigate barycenters, type and cotype, and various measures of compactness of metric trees. A metric tree (T, d) is a metric space such that between any two of its points there is a unique arc that is isometric to an interval in ℝ. We begin our investigation by examining isometric embeddings of metric trees into Banach spaces. We then investigate the possible images x₀ = π((x₁ + ... + xₙ)/n), where π is a contractive...
Download Results (CSV)