A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces
In this paper, the authors propose a new framework under which a theory of generalized Besov-type and Triebel-Lizorkin-type function spaces is developed. Many function spaces appearing in harmonic analysis fall under the scope of this new framework. The boundedness of the Hardy-Littlewood maximal operator or the related vector-valued maximal function on any of these function spaces is not required to construct these generalized scales of smoothness spaces. Instead, a key idea used is an application...