Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

A note on strong negative partition relations

Todd Eisworth — 2009

Fundamenta Mathematicae

We analyze a natural function definable from a scale at a singular cardinal, and use it to obtain some strong negative square-brackets partition relations at successors of singular cardinals. The proof of our main result makes use of club-guessing, and as a corollary we obtain a fairly easy proof of a difficult result of Shelah connecting weak saturation of a certain club-guessing ideal with strong failures of square-brackets partition relations. We then investigate the strength of weak saturation...

Totally proper forcing and the Moore-Mrówka problem

Todd Eisworth — 2003

Fundamenta Mathematicae

We describe a totally proper notion of forcing that can be used to shoot uncountable free sequences through certain countably compact non-compact spaces. This is almost (but not quite!) enough to produce a model of ZFC + CH in which countably tight compact spaces are sequential-we still do not know if the notion of forcing described in the paper can be iterated without adding reals.

On iterated forcing for successors of regular cardinals

Todd Eisworth — 2003

Fundamenta Mathematicae

We investigate the problem of when ≤λ-support iterations of < λ-complete notions of forcing preserve λ⁺. We isolate a property- properness over diamonds-that implies λ⁺ is preserved and show that this property is preserved by λ-support iterations. Our condition is a relative of that presented by Rosłanowski and Shelah in [2]; it is not clear if the two conditions are equivalent. We close with an application of our technology by presenting a consistency result on uniformizing colorings of ladder...

Uniformization and anti-uniformization properties of ladder systems

Todd EisworthGary GruenhageOleg PavlovPaul Szeptycki — 2004

Fundamenta Mathematicae

Natural weakenings of uniformizability of a ladder system on ω₁ are considered. It is shown that even assuming CH all the properties may be distinct in a strong sense. In addition, these properties are studied in conjunction with other properties inconsistent with full uniformizability, which we call anti-uniformization properties. The most important conjunction considered is the uniformization property we call countable metacompactness and the anti-uniformization property we call thinness. The...

Page 1

Download Results (CSV)