The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The Todorcevic ordering 𝕋(X) consists of all finite families of convergent sequences in a given topological space X. Such an ordering was defined for the special case of the real line by S. Todorcevic (1991) as an example of a Borel ordering satisfying ccc that is not σ-finite cc and even need not have the Knaster property. We are interested in properties of 𝕋(X) where the space X is taken as a parameter. Conditions on X are given which ensure the countable chain condition and its stronger versions...
Download Results (CSV)