The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Lieb–Thirring inequalities on the half-line with critical exponent

Tomas EkholmRupert Frank — 2008

Journal of the European Mathematical Society

We consider the operator - d 2 / d r 2 - V in L 2 ( + ) with Dirichlet boundary condition at the origin. For the moments of its negative eigenvalues we prove the bound tr ( - d 2 / d r 2 - V ) - γ C γ , α + ( V ( r ) - 1 / ( 4 r 2 ) ) + γ + ( 1 + α ) / 2 r α d r for any α [ 0 , 1 ) and γ ( 1 - α ) / 2 . This includes a Lieb-Thirring inequality in the critical endpoint case.

Page 1

Download Results (CSV)