Uncountable sets of unit vectors that are separated by more than 1
Let X be a Banach space. We study the circumstances under which there exists an uncountable set 𝓐 ⊂ X of unit vectors such that ||x-y|| > 1 for any distinct x,y ∈ 𝓐. We prove that such a set exists if X is quasi-reflexive and non-separable; if X is additionally super-reflexive then one can have ||x-y|| ≥ slant 1 + ε for some ε > 0 that depends only on X. If K is a non-metrisable compact, Hausdorff space, then the unit sphere of X = C(K) also contains such a subset; if moreover K is perfectly...