The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linear elasticity. We show that the UWVF of Navier’s equation can be derived as an upwind discontinuous Galerkin method. Using this observation, error estimates are investigated applying techniques from the theory of discontinuous Galerkin methods. In particular, we derive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and then an error estimate in the L() norm in terms of the best approximation...
We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linear
elasticity. We show that the UWVF of Navier’s equation can be derived as an upwind
discontinuous Galerkin method. Using this observation, error estimates are investigated
applying techniques from the theory of discontinuous Galerkin methods. In particular, we
derive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and then
an error estimate...
Download Results (CSV)