In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...
In this paper we present a methodology for constructing accurate
and efficient (HCU) type schemes for
the numerical resolution of a two-fluid model commonly used by the
nuclear and petroleum industry. Particularly, we propose a method
which does not make use of any information about the
eigenstructure of the Jacobian matrix of the model.
The two-fluid model possesses a highly nonlinear pressure law.
From the mass conservation equations we develop an evolution
equation which describes how pressure...
We construct a Roe-type numerical scheme for approximating the solutions
of a drift-flux two-phase flow model. The model incorporates a set of
highly complex closure laws, and the fluxes are generally not algebraic functions of the conserved variables. Hence, the classical approach of constructing a Roe solver by means of parameter vectors is unfeasible.
Alternative approaches for analytically constructing the Roe solver are discussed, and a formulation of the Roe solver valid for general closure...
We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed model. This...
We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed model. This...
Download Results (CSV)