We establish a sharp norm estimate of the Schwarzian derivative for a function in the classes of convex functions introduced by Ma and Minda [Proceedings of the Conference on Complex Analysis, Int. Press, 1992, 157-169]. As applications, we give sharp norm estimates for strongly convex functions of order α, 0 < α < 1, and for uniformly convex functions.
M. Biernacki gave in 1936 concrete forms of the variability regions of z/f(z) and zf'(z)/f(z) of close-to-convex functions f for a fixed z with |z|<1. The forms are, however, not necessarily convenient to determine the shape of the full variability region of zf'(z)/f(z) over all close-to-convex functions f and all points z with |z|<1. We propose a couple of other forms of the variability regions and see that the full variability region of zf'(z)/f(z) is indeed the complex plane minus the origin....
Download Results (CSV)