The paper defines and studies the Drazin inverse for a closed linear operator in a Banach space in the case that belongs to a spectral set of the spectrum of . Results are applied to extend a result of Krein on a nonhomogeneous second order differential equation in a Banach space.
We study a class of closed linear operators on a Banach space whose nonzero spectrum lies in the open left half plane, and for which is at most a simple pole of the operator resolvent. Our spectral theory based methods enable us to give a simple proof of the characterization of -semigroups of bounded linear operators with asynchronous exponential growth, and recover results of Thieme, Webb and van Neerven. The results are applied to the study of the asymptotic behavior of the solutions to a singularly...
Download Results (CSV)