Eight-secant conics for space curves.
Let C be a smooth non-degenerate integral curve of degree d and genus g in over an algebraically closed field of characteristic zero. For each point P in let be the linear system on C induced by the hyperplanes through P. By one maps C onto a plane curve , such a map can be seen as a projection of C from P. If P is not the vertex of a cone of bisecant lines, then will have only finitely many singular points; or to put it slightly different: The secant scheme parametrizing divisors in...
1 Supported in part by the Norwegian Research Council for Science and the Humanities. It is a pleasure for this author to thank the Department of Mathematics of the University of Sofia for organizing the remarkable conference in Zlatograd during the period August 28-September 2, 1995. It is also a pleasure to thank the M.I.T. Department of Mathematics for its hospitality from January 1 to July 31, 1993, when this work was started. 2Supported in part by NSF grant 9400918-DMS. We introduce...
Page 1