Factors of a perfect square
We consider a conjecture of Erdős and Rosenfeld and a conjecture of Ruzsa when the number is a perfect square. In particular, we show that every perfect square n can have at most five divisors between and .
We consider a conjecture of Erdős and Rosenfeld and a conjecture of Ruzsa when the number is a perfect square. In particular, we show that every perfect square n can have at most five divisors between and .
We obtain an asymptotic formula for the number of visible points (x,y), that is, with gcd(x,y) = 1, which lie in the box [1,U] × [1,V] and also belong to the exponential modular curves . Among other tools, some recent results of additive combinatorics due to J. Bourgain and M. Z. Garaev play a crucial role in our argument.
Page 1