The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
2000 Mathematics Subject Classification: Primary 17A50, Secondary 16R10, 17A30, 17D25, 17C50.
Algebras with identities a(bc)=b(ac), (ab)c=(ac)b is called bicommutative. Bases and the cocharacter sequence for free bicommutative algebras are found. It is shown that the exponent of the variety of bicommutaive algebras is equal to 2.
Download Results (CSV)