The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Suppose that {Xn, n ≥ 0} is a stationary Markov chain and V is a certain function on a phase space of the chain, called an observable. We say that the observable satisfies the central limit theorem (CLT) if [...] [...] converge in law to a normal random variable, as N → +∞. For a stationary Markov chain with the L2 spectral gap the theorem holds for all V such that V (X0) is centered and square integrable, see Gordin [7]. The purpose of this article is to characterize a family of observables V for...
Suppose that is a stationary Markov chain and is a certain function on a phase space of the chain, called an observable. We say that the observable satisfies the central limit theorem (CLT) if converge in law to a normal random variable, as . For a stationary Markov chain with the spectral gap the theorem holds for all such that is centered and square integrable, see Gordin [7]. The purpose of this article is to characterize a family of observables for which the CLT holds for a class...
Download Results (CSV)