The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the central limit theorem for some birth and death processes

Tymoteusz Chojecki — 2011

Annales UMCS, Mathematica

Suppose that {Xn, n ≥ 0} is a stationary Markov chain and V is a certain function on a phase space of the chain, called an observable. We say that the observable satisfies the central limit theorem (CLT) if [...] [...] converge in law to a normal random variable, as N → +∞. For a stationary Markov chain with the L2 spectral gap the theorem holds for all V such that V (X0) is centered and square integrable, see Gordin [7]. The purpose of this article is to characterize a family of observables V for...

On the central limit theorem for some birth and death processes

Tymoteusz Chojecki — 2011

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

Suppose that { X n : n 0 } is a stationary Markov chain and V is a certain function on a phase space of the chain, called an observable. We say that the observable satisfies the central limit theorem (CLT) if Y n : = N - 1 / 2 n = 0 N V ( X n ) converge in law to a normal random variable, as N + . For a stationary Markov chain with the L 2 spectral gap the theorem holds for all V such that V ( X 0 ) is centered and square integrable, see Gordin [7]. The purpose of this article is to characterize a family of observables V for which the CLT holds for a class...

Page 1

Download Results (CSV)