The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On hyper Darboux lines of a Finsler hypersurface from the standpoint of the non-linear connections

Udai Pratap SinghPrakash Chandra Yadav — 1973

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Il Singh aveva già introdotto [3] un'estensione delle linee di Darboux (hyper D-lines) alla ipersuperficie di uno spazio di Riemann. Tale nozione viene ora estesa alle ipersuperficie di uno spazio di Finsler servendosi della connessione non-lineare indotta su di esse. Vengono pure esaminate alcune proprietà di queste nuove curve in relazione ad un campo di vettori uscenti dai punti della ipersuperficie (union hyper D-lines).

Induced and intrinsic derivatives on the subspace of special Kawaguchi space

Udai Pratap SinghShri Krishna Deo Dubey — 1973

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Nella teoria degli spazi speciali di Kawaguchi esistono due tipi di connessione (indotta e intrinseca) su una varietà immersa (come nella geometria di Finsler). La loro differenza è stata determinata da Yoshida [2]. In questa Nota si definiscono e studiano due tipi di vettori normali di curvatura. Si discutono inoltre i due tipi di parallelismo di un campo vettoriale.

Union curves and union curvature of a curve in special Kawaguchi spaces of order two

Udai Pratap SinghShri Krishna Deo Dubey — 1973

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Diversi Autori hanno già studiato le union curves (curve assiali) e la relativa curvatura sugli spazi di Finsler. In questo lavoro tale teoria viene estesa ad uno speciale spazio di Kawaguchi di dimensione pari. È anche ottenuta l'espressione della curvatura geodetica delle "union curves".

Page 1

Download Results (CSV)