On the uniform paracompactness of the product of two uniform spaces
Gli spazi -metrici uniformemente numerabilmente paracompatti sono uniformemente paracompatti. Si fornisce altresì una caratterizzazione degli spazi -metrici fini.
Gli spazi -metrici uniformemente numerabilmente paracompatti sono uniformemente paracompatti. Si fornisce altresì una caratterizzazione degli spazi -metrici fini.
Let be a uniform space of uniform weight . It is shown that if every open covering, of power at most , is uniform, then is fine. Furthermore, an -metric space is fine, provided that every finite open covering is uniform.
We extend van Mill-Wattel's results and show that each countably compact completely regular space with a continuous selection on couples is suborderable. The result extends also to pseudocompact spaces if they are either scattered, first countable, or connected. An infinite pseudocompact topological group with such a continuous selection is homeomorphic to the Cantor set. A zero-selection is a selection on the hyperspace of closed sets which chooses always an isolated point of a set. Extending Fujii-Nogura...
Page 1