The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

On uniform paracompactness of the ω μ -metric spaces

Umberto Marconi — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Gli spazi ω μ -metrici uniformemente numerabilmente paracompatti sono uniformemente paracompatti. Si fornisce altresì una caratterizzazione degli spazi ω μ -metrici fini.

On uniform paracompactness of the ω μ -metric spaces

Umberto Marconi — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Gli spazi ω μ -metrici uniformemente numerabilmente paracompatti sono uniformemente paracompatti. Si fornisce altresì una caratterizzazione degli spazi ω μ -metrici fini.

Some conditions under which a uniform space is fine

Umberto Marconi — 1993

Commentationes Mathematicae Universitatis Carolinae

Let X be a uniform space of uniform weight μ . It is shown that if every open covering, of power at most μ , is uniform, then X is fine. Furthermore, an ω μ -metric space is fine, provided that every finite open covering is uniform.

Selections and suborderability

Giuliano ArticoUmberto MarconiJan PelantLuca RotterMikhail Tkachenko — 2002

Fundamenta Mathematicae

We extend van Mill-Wattel's results and show that each countably compact completely regular space with a continuous selection on couples is suborderable. The result extends also to pseudocompact spaces if they are either scattered, first countable, or connected. An infinite pseudocompact topological group with such a continuous selection is homeomorphic to the Cantor set. A zero-selection is a selection on the hyperspace of closed sets which chooses always an isolated point of a set. Extending Fujii-Nogura...

Page 1

Download Results (CSV)