The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions
In a previous note the author gave a generalisation of Witten’s proof of the Morse inequalities to the model of a complex singular curve and a stratified Morse function . In this note a geometric interpretation of the complex of eigenforms of the Witten Laplacian corresponding to small eigenvalues is provided in terms of an appropriate subcomplex of the complex of unstable cells of critical points of .