Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The covering semigroup of invariant control systems on Lie groups

Víctor AyalaEyüp Kizil — 2016

Kybernetika

It is well known that the class of invariant control systems is really relevant both from theoretical and practical point of view. This work was an attempt to connect an invariant systems on a Lie group G with its covering space. Furthermore, to obtain algebraic properties of this set. Let G be a Lie group with identity e and Σ 𝔤 a cone in the Lie algebra 𝔤 of G that satisfies the Lie algebra rank condition. We use a formalism developed by Sussmann, to obtain an algebraic structure on the covering...

Controllability of invariant control systems at uniform time

Let G be a compact and connected semisimple Lie group and Σ an invariant control systems on G . Our aim in this work is to give a new proof of Theorem 1 proved by Jurdjevic and Sussmann in [6]. Precisely, to find a positive time s Σ such that the system turns out controllable at uniform time s Σ . Our proof is different, elementary and the main argument comes directly from the definition of semisimple Lie group. The uniform time is not arbitrary. Finally, if A = t > 0 A ( t , e ) denotes the reachable set from arbitrary...

Page 1

Download Results (CSV)