It is well known that the class of invariant control systems is really relevant both from theoretical and practical point of view. This work was an attempt to connect an invariant systems on a Lie group with its covering space. Furthermore, to obtain algebraic properties of this set. Let be a Lie group with identity and a cone in the Lie algebra of that satisfies the Lie algebra rank condition. We use a formalism developed by Sussmann, to obtain an algebraic structure on the covering...
For a given endomorphism φ on a connected Lie group G this paper studies several subgroups of G that are intrinsically connected with the dynamic behavior of φ.
Let be a compact and connected semisimple Lie group and an invariant control systems on . Our aim in this work is to give a new proof of Theorem 1 proved by Jurdjevic and Sussmann in [6]. Precisely, to find a positive time such that the system turns out controllable at uniform time . Our proof is different, elementary and the main argument comes directly from the definition of semisimple Lie group. The uniform time is not arbitrary. Finally, if denotes the reachable set from arbitrary...
Download Results (CSV)