The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Discrete smoothing splines and digital filtration. Theory and applications

Jiří HřebíčekFrantišek ŠikVítězslav Veselý — 1990

Aplikace matematiky

Two universally applicable smoothing operations adjustable to meet the specific properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing digital convolution filters. The first operation is related to the data vector r = ( r 0 , . . . , r n - 1 ) T with respect to the operations 𝒜 , and to the smoothing parameter α . The resulting function is denoted by σ α ( t ) . The measured sample r is defined on an equally spaced mesh Δ = { t i = i h } i = 0 n - 1 T = n h . The smoothed data vector y is then y = { σ α ( t i ) } i = 0 n - 1 . The other operation...

Page 1

Download Results (CSV)