The search session has expired. Please query the service again.
A digraph D is said to satisfy the k-Meyniel's condition if each odd directed cycle of D has at least k diagonals.
The study of the k-Meyniel's condition has been a source of many interesting problems, questions and results in the development of Kernel Theory.
In this paper we present a method to construct a large variety of kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy the k-Meyniel's condition.
A kernel of a digraph D is a subset N ⊆ V(D) which is both independent and absorbing. When every induced subdigraph of D has a kernel, the digraph D is said to be kernel-perfect. We say that D is a critical kernel-imperfect digraph if D does not have a kernel but every proper induced subdigraph of D does have at least one. Although many classes of critical kernel-imperfect-digraphs have been constructed, all of them are digraphs such that the block-cutpoint tree of its asymmetrical part is a path....
Download Results (CSV)