Distances between composition operators.
Composition operators C induced by a selfmap φ of some set S are operators acting on a space consisting of functions on S by composition to the right with φ, that is Cf = f º φ. In this paper, we consider the Hilbert Hardy space H on the open unit disk and find exact formulas for distances ||C - C|| between composition operators. The selfmaps φ and ψ involved in those formulas are constant, inner, or analytic selfmaps of the unit disk fixing the origin.