Homogenization of quasi-linear equations with natural growth terms.
The work focuses on the Γ-convergence problem and the convergence of minimizers for a functional defined in a periodic perforated medium and combining the bulk (volume distributed) energy and the surface energy distributed on the perforation boundary. It is assumed that the mean value of surface energy at each level set of test function is equal to zero. Under natural coercivity and -growth assumptions on the bulk energy, and the assumption that the surface energy satisfies -growth upper bound,...
Si studia il comportamento asintotico di una classe di funzionali integrali che possono dipendere da misure concentrate su strutture periodiche multidimensionali, quando tale periodo tende a 0. Il problema viene ambientato in spazi di Sobolev rispetto a misure periodiche. Si dimostra, sotto ipotesi generali, che un appropriato limite può venire definito su uno spazio di Sobolev usuale usando tecniche di -convergenza. Il limite viene espresso come un funzionale integrale il cui integrando è caratterizzato...
Page 1