The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Finite element analysis of primal and dual variational formulations of semicoercive elliptic problems with nonhomogeneous obstacles on the boundary

Van Bon Tran — 1988

Aplikace matematiky

The Poisson equation with non-homogeneous unilateral condition on the boundary is solved by means of finite elements. The primal variational problem is approximated on the basis of linear triangular elements, and O ( h ) -convergence is proved provided the exact solution is regular enough. For the dual problem piecewise linear divergence-free approximations are employed and O ( h 3 / 2 ) -convergence proved for a regular solution. Some a posteriori error estimates are also presented.

Page 1

Download Results (CSV)