Completely faithful Selmer groups over Kummer extensions.
This paper is motivated by the question whether there is a nice structure theory of finitely generated modules over the Iwasawa algebra, i.e. the completed group algebra, of a -adic analytic group . For without any -torsion element we prove that is an Auslander regular ring. This result enables us to give a good definition of the notion of a pseudo-null -module. This is classical when for some integer , but was previously unknown in the non-commutative case. Then the category of -modules...
Let G be a compact -adic Lie group, with no element of order , and having a closed normal subgroup H such that G/H is isomorphic to . We prove the existence of a canonical Ore set S of non-zero divisors in the Iwasawa algebra Λ(G) of G, which seems to be particularly relevant for arithmetic applications. Using localization with respect to S, we are able to define a characteristic element for every finitely generated Λ(G)-module M which has the property that the quotient of M by its...
Page 1