The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the transient and recurrent parts of a quantum Markov semigroup

Veronica Umanità — 2006

Banach Center Publications

We define the transient and recurrent parts of a quantum Markov semigroup 𝓣 on a von Neumann algebra 𝓐 and we show that, when 𝓐 is σ-finite, we can write 𝓣 as the sum of such semigroups. Moreover, if 𝓣 is the countable direct sum of irreducible semigroups each with a unique faithful normal invariant state ρₙ, we find conditions under which any normal invariant state is a convex combination of ρₙ's.

On two quantum versions of the detailed balance condition

Franco FagnolaVeronica Umanità — 2010

Banach Center Publications

Quantum detailed balance conditions are often formulated as relationships between the generator of a quantum Markov semigroup and the generator of a dual semigroup with respect to a certain scalar product defined by an invariant state. In this paper we survey some results describing the structure of norm continuous quantum Markov semigroups on ℬ(h) satisfying a quantum detailed balance condition when the duality is defined by means of pre-scalar products on ℬ(h) of the form x , y s : = t r ( ρ 1 - s x * ρ s y ) (s ∈ [0,1]) in order...

Quantum detailed balance conditions with time reversal: the finite-dimensional case

Franco FagnolaVeronica Umanità — 2011

Banach Center Publications

We classify generators of quantum Markov semigroups on (h), with h finite-dimensional and with a faithful normal invariant state ρ satisfying the standard quantum detailed balance condition with an anti-unitary time reversal θ commuting with ρ, namely t r ( ρ 1 / 2 x ρ t 1 / 2 ( y ) ) = t r ( ρ 1 / 2 θ y * θ ρ t 1 / 2 ( θ x * θ ) ) for all x,y ∈ and t ≥ 0. Our results also show that it is possible to find a standard form for the operators in the Lindblad representation of the generators extending the standard form of generators of quantum Markov semigroups satisfying the usual...

Page 1

Download Results (CSV)