The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

A Basic Result on the Theory of Subresultants

Akritas, Alkiviadis G.Malaschonok, Gennadi I.Vigklas, Panagiotis S. — 2016

Serdica Journal of Computing

Given the polynomials f, g ∈ Z[x] the main result of our paper, Theorem 1, establishes a direct one-to-one correspondence between the modified Euclidean and Euclidean polynomial remainder sequences (prs’s) of f, g computed in Q[x], on one hand, and the subresultant prs of f, g computed by determinant evaluations in Z[x], on the other. An important consequence of our theorem is that the signs of Euclidean and modified Euclidean prs’s - computed either in Q[x] or in Z[x] - are uniquely determined...

Subresultant Polynomial Remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x]

Akritas, Alkiviadis G.Malaschonok, Gennadi I.Vigklas, Panagiotis S. — 2016

Serdica Journal of Computing

In this paper we present two new methods for computing the subresultant polynomial remainder sequence (prs) of two polynomials f, g ∈ Z[x]. We are now able to also correctly compute the Euclidean and modified Euclidean prs of f, g by using either of the functions employed by our methods to compute the remainder polynomials. Another innovation is that we are able to obtain subresultant prs’s in Z[x] by employing the function rem(f, g, x) to compute the remainder polynomials in [x]. This is achieved...

Page 1

Download Results (CSV)