Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Large dimensional sets not containing a given angle

Viktor Harangi — 2011

Open Mathematics

We say that a set in a Euclidean space does not contain an angle α if the angle determined by any three points of the set is not equal to α. The goal of this paper is to construct compact sets of large Hausdorff dimension that do not contain a given angle α ∈ (0,π). We will construct such sets in ℝn of Hausdorff dimension c(α)n with a positive c(α) depending only on α provided that α is different from π/3, π/2 and 2π/3. This improves on an earlier construction (due to several authors) that has dimension...

On the uniqueness of periodic decomposition

Viktor Harangi — 2011

Fundamenta Mathematicae

Let a , . . . , a k be arbitrary nonzero real numbers. An ( a , . . . , a k ) -decomposition of a function f:ℝ → ℝ is a sum f + + f k = f where f i : is an a i -periodic function. Such a decomposition is not unique because there are several solutions of the equation h + + h k = 0 with h i : a i -periodic. We will give solutions of this equation with a certain simple structure (trivial solutions) and study whether there exist other solutions or not. If not, we say that the ( a , . . . , a k ) -decomposition is essentially unique. We characterize those periods for which essential uniqueness...

Page 1

Download Results (CSV)