The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a primitive cusp form of weight at least 2, and let be the -adic
Galois representation attached to . If is -ordinary, then it is known that the
restriction of to a decomposition group at is “upper triangular”. If in
addition has CM, then this representation is even “diagonal”. In this paper we
provide evidence for the converse. More precisely, we show that the local Galois
representation is not diagonal, for all except possibly finitely many of the arithmetic
members of a non-CM...
Let and be an Eisenstein series and a cusp form, respectively, of the same weight and of the same level , both eigenfunctions of the Hecke operators, and both normalized so that . The main result we prove is that when and are congruent mod a prime (which we take in this paper to be a prime of lying over a rational prime ), the algebraic parts of the special values and satisfy congruences mod the same prime. More explicitly, we prove that, under certain conditions,
...
Download Results (CSV)