Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Convergence at the origin of integrated semigroups

Vincent Cachia — 2008

Studia Mathematica

We study a classification of κ-times integrated semigroups (for κ > 0) by their (uniform) rate of convergence at the origin: | | S ( t ) | | = ( t α ) as t → 0 (0 ≤ α ≤ κ). By an improved generation theorem we characterize this behaviour by Hille-Yosida type estimates. Then we consider integrated semigroups with holomorphic extension and characterize their convergence at the origin, as well as the existence of boundary values, by estimates of the associated holomorphic semigroup. Various examples illustrate these results....

Page 1

Download Results (CSV)