On some completions of the space of hamiltonian maps
In one of his papers, C. Viterbo defined a distance on the set of Hamiltonian diffeomorphisms of endowed with the standard symplectic form . We study the completions of this space for the topology induced by Viterbo’s distance and some others derived from it, we study their different inclusions and give some of their properties. In particular, we give a convergence criterion for these distances that allows us to prove that the completions contain non-ordinary elements, as for example, discontinuous...