Essentially-Euclidean convex bodies
In this note we introduce a notion of essentially-Euclidean normed spaces (and convex bodies). Roughly speaking, an n-dimensional space is λ-essentially-Euclidean (with 0 < λ < 1) if it has a [λn]-dimensional subspace which has further proportional-dimensional Euclidean subspaces of any proportion. We consider a space X₁ = (ℝⁿ,||·||₁) with the property that if a space X₂ = (ℝⁿ,||·||₂) is "not too far" from X₁ then there exists a [λn]-dimensional subspace E⊂ ℝⁿ such that E₁ = (E,||·||₁) and...