The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In many engineering problems, we face multi-objective optimization, with several objective functions f₁,...,fₙ. We want to provide the user with the Pareto set-a set of all possible solutions x which cannot be improved in all categories (i.e., for which for all j and for some j is impossible). The user should be able to select an appropriate trade-off between, say, cost and durability. We extend the general results about (verified) algorithmic computability of maxima locations to show that Pareto...
Download Results (CSV)