Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Persistency in the Traveling Salesman Problem on Halin graphs

Vladimír Lacko — 2000

Discussiones Mathematicae Graph Theory

For the Traveling Salesman Problem (TSP) on Halin graphs with three types of cost functions: sum, bottleneck and balanced and with arbitrary real edge costs we compute in polynomial time the persistency partition E A l l , E S o m e , E N o n e of the edge set E, where: E A l l = e ∈ E, e belongs to all optimum solutions, E N o n e = e ∈ E, e does not belong to any optimum solution and E S o m e = e ∈ E, e belongs to some but not to all optimum solutions.

Balanced problems on graphs with categorization of edges

Štefan BerežnýVladimír Lacko — 2003

Discussiones Mathematicae Graph Theory

Suppose a graph G = (V,E) with edge weights w(e) and edges partitioned into disjoint categories S₁,...,Sₚ is given. We consider optimization problems on G defined by a family of feasible sets (G) and the following objective function: L ( D ) = m a x 1 i p ( m a x e S i D w ( e ) - m i n e S i D w ( e ) ) For an arbitrary number of categories we show that the L₅-perfect matching, L₅-a-b path, L₅-spanning tree problems and L₅-Hamilton cycle (on a Halin graph) problem are NP-complete. We also summarize polynomiality results concerning above objective functions for arbitrary...

The color-balanced spanning tree problem

Štefan BerežnýVladimír Lacko — 2005

Kybernetika

Suppose a graph G = ( V , E ) whose edges are partitioned into p disjoint categories (colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for that minimizes the variability in the number of edges from different categories. We show that polynomiality of this problem depends on the number p of categories and present some polynomial algorithm.

Page 1

Download Results (CSV)