We show that a Banach space X has an infinite dimensional reflexive subspace (quotient) if and only if there exist a Banach space Z and a non-isomorphic one-to-one (dense range) Tauberian (co-Tauberian) operator form X to Z (Z to X). We also give necessary and sufficient condition for the existence of a Tauberian operator from a separable Banach space to c which in turn generalizes a result of Johnson and Rosenthal. Another application of our result shows that if X** is separable, then there exists...
Let X be a Banach space with a basis. We prove that X is reflexive if and only if every power-bounded linear operator T satisfies Browder’s equality
= (I-T)XWe then deduce that X (with a basis) is reflexive if and only if every strongly continuous bounded semigroup with generator A satisfies
.
The range (I-T)X (respectively, AX for continuous time) is the space of x ∈ X for which Poisson’s equation (I-T)y = x (Ay = x in continuous time) has a solution y ∈ X; the above equalities for the ranges...
Sea T un operador lineal acotado e inyectivo de un espacio de Banach X en un espacio de Hilbert H con rango denso y sea {x} ⊂ X una sucesión tal que {Tx} es ortogonal. Se estudian propiedades de {Tx} dependientes de propiedades de {x}. También se estudia la ""situación opuesta"", es decir, la acción de un operador T : H → X sobre sucesiones ortogonales.
Download Results (CSV)