The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Root arrangements of hyperbolic polynomial-like functions.

Vladimir Petrov Kostov — 2006

Revista Matemática Complutense

A real polynomial P of degree n in one real variable is hyperbolic if its roots are all real. A real-valued function P is called a hyperbolic polynomial-like function (HPLF) of degree n if it has n real zeros and P(n) vanishes nowhere. Denote by xk (i) the roots of P(i), k = 1, ..., n-i, i = 0, ..., n-1. Then in the absence of any equality of the form xi ...

Polynomials, sign patterns and Descartes' rule of signs

Vladimir Petrov Kostov — 2019

Mathematica Bohemica

By Descartes’ rule of signs, a real degree d polynomial P with all nonvanishing coefficients with c sign changes and p sign preservations in the sequence of its coefficients ( c + p = d ) has pos c positive and ¬ p negative roots, where pos c ( mod 2 ) and ¬ p ( mod 2 ) . For 1 d 3 , for every possible choice of the sequence of signs of coefficients of P (called sign pattern) and for every pair ( pos , neg ) satisfying these conditions there exists a polynomial P with exactly pos positive and exactly ¬ negative roots (all of them simple). For d 4 this is not...

Schur-Szegö Composition of Small Degree Polynomials

Kostov, Vladimir Petrov — 2014

Serdica Mathematical Journal

[Kostov Vladimir Petrov; Костов Владимир Петров] We consider real polynomials in one variable without root at 0 and without multiple roots. Given the numbers of the positive, negative and complex roots of two such polynomials, what can be these numbers for their composition of Schur-Szegö? We give the exhaustive answer to the question for degree 2, 3 and 4 polynomials and also in the case when the degree is arbitrary, the composed polynomials being with all roots real, and one of the...

Even and Old Overdetermined Strata for Degree 6 Hyperbolic Polynomials

Ezzaldine, HayssamKostov, Vladimir Petrov — 2008

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 12D10. In the present paper we consider degree 6 hyperbolic polynomials (HPs) in one variable (i.e. real and with all roots real). We are interested in such HPs whose number of equalities between roots of the polynomial and/or its derivatives is higher than expected. We give the complete study of the four families of such degree 6 even HPs and also of HPs which are primitives of degree 5 HPs. Research partially supported by research...

Page 1

Download Results (CSV)