This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that guarantee...
This paper provides new results of consistence and convergence of the
lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed,
lumped parameter models (exploiting the electric circuit analogy for the circulatory system)
are shown to discretize continuous 1D models
at first order in space.
We derive the complete set of equations useful for the blood flow networks,
new schemes for electric circuit analogy,
the stability criteria that...
This work aims to extend in two distinct directions results recently obtained in [10]. In a first step we focus on the possible extension of our results to the time
dependent case. Whereas in the second part some preliminary numerical simulations aim to
give orders of magnitudes in terms of numerical costs of direct 3D simulations.
We consider, in the first part, the time dependent rough problem for a simplified heat
equation in a straight channel that...
Download Results (CSV)