On the structure of sequences with forbidden zero-sum subsequences
We study the structure of longest sequences in which have no zero-sum subsequence of length n (or less). We prove, among other results, that for and d arbitrary, or and d = 3, every sequence of c(n,d)(n-1) elements in which has no zero-sum subsequence of length n consists of c(n,d) distinct elements each appearing n-1 times, where and .