The Lipschitz condition for the conjugacies of Feigenbaum-like mappings
Under very mild assumptions, any Lipschitz continuous conjugacy between the closures of the postcritical sets of two C¹-unimodal maps has a derivative at the critical point, and also on a dense set of its preimages. In a more restrictive situation of infinitely renormalizable maps of bounded combinatorial type the Lipschitz condition automatically implies the C¹-smoothness of the conjugacy. Here the critical degree can be any real number α > 1.
This is a study of the monotone (in parameter) behavior of the ratios of the consecutive intervals in the nested family of intervals delimited by the itinerary of a critical point. We consider a one-parameter power-law family of mappings of the form . Here we treat the dynamically simplest situation, before the critical point itself becomes strongly attracting; this corresponds to the kneading sequence RRR..., or-in the quadratic family-to the parameters c ∈ [-1,0] in the Mandelbrot set. We allow...
Page 1