Moduli of certain Fano 4-folds.
In this brief note we give a proof that a certain family of Fano 4-folds, described below, is complex (locally) complete and effectively parametrized in the sense of Kodaira-Spencer [Ko-Sp].
In this brief note we give a proof that a certain family of Fano 4-folds, described below, is complex (locally) complete and effectively parametrized in the sense of Kodaira-Spencer [Ko-Sp].
The purpose of this paper, which is a continuation of [2, 3], is to prove further results about arithmetic modular forms and functions. In particular we shall demonstrate here a q-expansion principle which will be useful in proving a reciprocity law for special values of arithmetic Hilbert modular functions, of which the classical results on complex multiplication are a special case. The main feature of our treatment is, perhaps, its independence of the theory of abelian varieties.
Page 1