The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let p be an odd prime. For each integer a with 1 ≤ a ≤ p − 1, it is clear that there exists one and only one ā with 1 ≤ ā ≤ p − 1 such that a · ā ≡ 1 mod p. Let N(p) denote the set of all primitive roots a mod p with 1 ≤ a ≤ p − 1 in which a and ā are of opposite parity. The main purpose of this paper is using the analytic method and the estimate for the hybrid exponential sums to study the solvability of the congruence a + b ≡ 1 mod p with a, b ∈ N(p), and give a sharper asymptotic formula for...
Download Results (CSV)